Nonlinear Mode Coupling of a Vertically Paired Structure in Complex Plasma

REU Summer 2018

Nicholas Ernst, Zhiyue Ding \& Truell W. Hyde

Overview

CASPER :

- What is Complex Plasma? (3-5)
- Our Experiment (6)
- Methods (7)
- Analysis (8-I0)
- Theory (II-I3)
- Conclusions and Future Work (14)
-Acknowledgements (I5)

What is Complex Plasma?

- Dusty Plasma
- Micrometer Sized Particles Immersed in a Partially lonized Plasma Medium
- Space, Industry, Fusion Devices, Laboratory
- Dust Exhibits Negative Charge

- High Electron Mobility
- Weak and Strong Coupled System
- Interesting Dynamical Behaviors
- Crystal Formation, Wave Propagation, Fluid Flow, Phase Transitions, etc.

Complex Plasma in the Laboratory

CASPER .

- GEC-Reference Cell

- Capacitively Coupled RF Discharge- Argon and Neon
- I3.56 MHz- Low Temperature Plasma
- Negative Bottom Electrode, Grounded Top
- Bulk Plasma and Ion Flow
- Plasma Sheath and Parabolic Potential Well
- Time Scales Ideal for Video Microscopy
- Laser Illumination
- CCD Camera
- Analogue Systems

Forces and Ion Wake

www.baylor.edu/CASPER . .

Fig. 2: Complex Plasma Forces- Complex and Dusty Plasmas From Laboratory to Space high plasma density

- Gravity and Electrostatic
- Charge-to-Mass Ratio
- Thermophoretic
- Neutral Drag
- Ion Flow
- Ion Drag
- Ion Wake
- Non-Reciprocal Force
- Dynamic Response in Plasma
- Charge, Mass, Flow Rates, Temperature, Etc.

Our Work and Experiment

- Particle Interactions
- Nonlinear regime
- Internal Resonance
- Two-Particle System
- Driven in the Vertical Direction
- Modulated Sinusoidal Force
- Mode Coupling Instability
- Vertical and Radial
- GEC Reference Cell

Methods

- Glass Box
- Varied: Driving Amplitude, Driving Frequency, DC Bias Voltage
- Prominent Near Breathing Frequency and High Driving Voltage

Analysis

Particle
Trajectories

Upstream Particle Horiz. Postion (40 DC)

Downstream Particle Horiz. Position (40 DC)

Analysis

0.5 Volt Drive Amplitude

2 Volt Drive Amplitude

Analysis

CASPIER .
 www.baylor.edu/CASPER.

40 DC at 0.5 V

Power Spectrum

40 DC at 2.0V

Theory

- Driven, Damped Coupled Oscillator in the Linear Regime
- Fails to Explain this Phenomena
- Other Work

Nonlinearities in Confinement (Anharmonic Sheath) Does Not Explain

- Impose a Force Dependent Upon Horz. And Vert. Displacement
- Pair is Strongly Coupled System Affected by the Ion Wake
- Further Expand into the Nonlinear Regime

Theory

Driven, Damped Oscillator With Non-Reciprocal Interaction Equations of Motion

$$
\left\{\begin{array} { l }
{ \ddot { x } _ { 1 } + \omega _ { 1 } ^ { 2 } x _ { 1 } + \mu _ { 1 } \dot { x _ { 1 } } + k _ { 1 2 , x } (d) = 0 } \\
{ \ddot { x } _ { 2 } + \omega _ { 2 } ^ { 2 } x _ { 2 } + \mu _ { 2 } \dot { x _ { 2 } } + k _ { 2 1 , x } (d) = 0 }
\end{array} \quad \left\{\begin{array}{l}
\ddot{y}_{1}+\omega_{3}^{2} y_{1}+\mu_{3} \dot{y}_{1}+k_{12, y}(d)=F_{1} e^{i \Omega t} \\
\ddot{y}_{2}+\omega_{4}^{2} y_{2}+\mu_{4} \dot{y}_{2}+k_{21, y}(d)=F_{2} e^{i \Omega t}
\end{array}\right.\right.
$$

Interaction Force Expanded into Nonlinear Regime

$$
\begin{gathered}
k_{x}(d) \approx k_{x}(0,0)+\left.\left(x_{2}-x_{1}\right) \frac{\partial k_{x}}{\partial\left(x_{2}-x_{1}\right)}\right|_{0,0}+\left.\left(y_{2}-y_{1}\right) \frac{\partial k_{x}}{\partial\left(y_{2}-y_{1}\right)}\right|_{0,0}+\frac{1}{2}\left(x_{2}-x_{1}\right)^{2} \\
\left.\frac{\partial^{2} k_{x}}{\partial\left(x_{2}-x_{1}\right)^{2}}\right|_{0,0}+\left.\frac{1}{2}\left(y_{2}-y_{1}\right)^{2} \frac{\partial^{2} k_{x}}{\partial\left(y_{2}-y_{1}\right)^{2}}\right|_{0,0}+\left.\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right) \frac{\partial^{2} k_{x}}{\partial\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\right|_{0,0}+\cdots \\
* k_{y}(d) \text { Takes Similar Form }
\end{gathered}
$$

Theory

CASPER .

- To Solve: Must Decouple Equations in the Linear Regime

New Cord.	High Sloshing	Low Sloshing	Breathing	Sloshing
System	$x_{+}=x_{1}-\left(\alpha_{-}\right) x_{2}$	$x_{-}=x_{1}-\left(\alpha_{+}\right) x_{2}$	$y_{+}=y_{1}-\left(\beta_{-}\right) y_{2}$	$y_{-}=y_{1}-\left(\beta_{+}\right) y_{2}$

- Our Equations Now Take The Form

$$
\left\{\begin{array}{l}
\ddot{x}_{+}+\omega_{+}^{2} x_{+}+g_{1} x_{-} y_{+}+g_{2} x_{+} y_{-}+\mu \dot{x}_{+}=0 \\
\ddot{y}_{+}+\omega_{y}^{2} y_{+}+a_{1} x_{+}+a_{2} y_{+}{ }^{2}+a_{3} y_{+} y_{-}+a_{4} y_{-}{ }^{2}+\mu \dot{y}_{+}=F_{1} e^{i \Omega t} \\
\ddot{y}_{-}+\omega_{y-}^{2} y_{-}+h_{1} x_{+}{ }^{2}+h_{2} y_{+}{ }^{2}+h_{3} y_{+} y_{-}+h_{4} y_{-}{ }^{2}+\mu \dot{y}_{-}=F_{2} e^{i \Omega t}
\end{array}\right.
$$

- Can Now Solve Using Multiple Scale Perturbation
- Solve to Second Order with a Fast and Slow Timescale

Conclusions and Future Work

- Experimental Analysis Points to Mode Coupling
- Our Equations of Motion Can Explain It
- Fully Solve Equations of Motion
- Explore the Peculiarities
- Run Simulations
- Perform Experiments OverWider Range
- Look For Hysteresis
- Fundamental Insight for Particle Interactions
- Wakefield

The World Operates in Nonlinear

Thank You!

- CASPER- Hypervelocity Impacts \& Dusty Plasma Lab
- Baylor University
- Jorge Carmona Reyes
- Dr. Matthews and Dr. Hyde
- Zhiyue Ding

Questions?

This material is based upon work supported by the National Science Foundation And NASA Under Grants No. I7072I5, I740203, JPLI57I70I

