Normal Mode Analysis of Chain Structures in Complex Plasma

ww.baylor.edu/CASPER

Introduction

A complex plasma consists of dust particles immersed in a weakly ionized gas, a common occurrence in astrophysical environments. In typical laboratory conditions particles obtain large charges and become strongly coupled via the screened Coulomb force. Plasma crystals have been studied extensively since their 1994 discovery [1]. Dust particles have large enough perturb the system. Complex plasma particles are ideal models for the study of classical and condensed matter systems.

Systems with low particle numbers may be characterized by normal vibrational modes [2]. hese mode eigenvectors and corresponding eigenfrequencies are determined by solving the linearized equation of motion

$$
M \ddot{\vec{r}}=D_{\alpha i, \beta j} \vec{r}
$$

with $\alpha, \beta=x, y, z$ and $i, j=1,2 \ldots, N$. Here the dynamic matrix is defined as

$$
D_{\alpha i \beta j}=\left(\frac{\partial F_{\alpha i}}{\partial r_{\beta j}}\right)
$$

In typical laboratory conditions the path of ions are bent as they flow past the charged particle, leading to a complex downstream wake potential. The goal is to obtain a qualitative description of the potential for a single particle chain purely by comparing theoretical eigenfrequencies to experimental mode spectra. An additional goal is to explain the mode
spectrum of a hexagonal chain structure.

Figure 1. (a) Diagram of Gaseous Electronics Conference (GEC) reference cell in Baylor's Hypervelocity Impacts \& Dusty Plasmas Lab. The lower electrode ionizes the Argon gas and driven at 13.56 MHz . The power is 200 mV , and the pressure is 144 mTorr . Horizontal confinement is provided by a parabolic well due to the cutout and a glass box. Particles levitate in the sheath above the lower electrode, balanced by a self induced E field. Laser
illumination allows CCD camera imaging at 60 fps. (b) Single and hexagonal chain configurations for 8.89 micrometer melamine formaldehyde particles. Hexagonal chain is single chain surrounded by six three-particle chains in the shape of a hexagon when viewed
from above.

Methods

Normal Mode Analysis (NMA) was performed by recording the random Brownian motion of particles around their equilibrium positions \vec{r}_{i} at 60 fps. The particle velocities $\vec{v}_{i}(t)=\Delta \vec{r}_{i}(t) / \Delta t$ were projected onto each mode eigenvector $\vec{a}_{i, l}$ with $\ell=1,2, \ldots, 3 N$ representing mode number. Thus the time dependent signal

$$
v_{1}(t)=\sum_{i=1}^{N} \bar{v}_{1}(t) \cdot \bar{a}_{1}
$$

is calculated. Finally, the spectral power density [3] is defined to be

$$
S_{\ell}(\omega)=\frac{2}{T}\left|\int_{-T / 2}^{T / 2} v_{\ell}(t) \cdot e^{-i \omega t} d t\right|^{2}
$$

Austin Hoover, Ke Qiao, and Truell W. Hyde Center for Astrophysics, Space Physics and Engineering Research Baylor University, Waco, TX 76798-7310, USA

Figure 2. The normal mode spectrum for a six particle, vertically aligned chain. The ionized Argon gas pressure $=144 \mathrm{mTorr}$, and the ff power $=200 \mathrm{mV}$. Modes $1-6$ are horizontal oscillations; $7-12$ are vertical. The color bar corresponds to measured spectral power densial, b) Yukawa + point charge potential, c) same as b, but only acting a) downstream

It can be seen from Figure 1a that vertical motion is well described by a Yukawa potential, but horizontal motion is not. Imaginary frequencies correspond to absolutely instabilities in the system, as can be seen from an exponential growth or decay term in the equation of motion:

$$
x(t)=A e^{-i \omega t}=A e^{-i(c+d i) t}=A e^{-i c t} e^{d t}
$$

The point charge model is a logical next step, in which an additional term is added to the Yukawa potentia

$$
\phi(r)=\frac{1}{4 \pi \varepsilon_{o}}\left[\frac{Q}{r} e^{-r / \lambda_{d}}+\frac{q}{r_{p}} e^{-r_{r} / /_{s}}\right]
$$

where and art the charge and distance to the point charge. Figure 1 b shows that this
additional term disturbs the vertical modes, although leading to the semi-stable Schweigert additional term disturbs the vertical modes, although leading to the semi-stable Schweigert
instabilities in the horizontal modes (complex \# frequencies). It can be concluded that the point charge model is inadequate for a vertically aligned structure; however, Figure 1c suggests a potential that only acts on downstream neighbors is more accurate. A final analytical guess of the potential comes in the form of a harmonic oscillator potential well, decaying along the z axis

$$
\phi(\rho)=-\frac{1}{2} k \rho^{2}\left(e^{-z} \sin (z)\right)
$$

where is the radial distance from the z axis. The sinusoidal term creates a positive space charge region, instead of a simple point charge. Figure 1d shows a semi-stable system suggesting a wake force which is attractive mostly in the radial direction.
(a

single chain mode \#
(b

${ }^{2}$ ²ingle chain mode number

Figure 3. Relationship between vertical modes of a single chain and the middle chain of a hexagonal structure. High values correspond to strong correspondence between _-manem Figure 4. Radial direction eigenvectors for modes in top (left column) and bottom (righ
column) branches of Figure 3b These modes produce frequencies which are higher lower than experiment. The to of view of the hexagonal middle chain with 6 particle surrounded by 6 sub-chains o 3 particles each. Modes dominated by vertical sub more closely with experiment.

Figure 3 shows a double branching effect for the hexagonal structure mode spectrum, but a quadruple branch for the theoretical. Results are inconclusive. The top two branches (s However, outlying frequencies close to that of exper two branches. Observation of the mode eigenvectors in Figure 4 shows that the outlying branches are dominated by radial motion.

Conclusions

By fitting theoretical eigenfrequencies to a the normal mode spectrum for a single chain, a general description of the wake potential behind a particle was proposed. It is attractive in the radial direction, with a positive region around the position of the lower particle. It decays along the z axis, and it only acts on downstream particles. Additionally, the mode spectrum of Future work will seek to validate better models of the wake potential using NMA. Analytical expressions of the potential involve difficult complex integration, so a numerical implementation could studied using COP TIC, a paricle-in-cell sim ulitn. It is still unknown downstream particles aft the wake of the top particle, which could have consequences in chains. Results could be generalized to a hexagonal structure.

References
[17) Ae Melzer Phys.
[3] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and D. Mohlmann, Phys. Rev. Lett. 73,652 (1994).
Supported by the National Science Foundation under Grant No. 1414523, 1740203, 1707215 And By NASA under Grant No
1571701

Normal Mode Analysis of Chain Structures in Complex Plasma

Austin Hoover
Ke Qiao
Truell Hyde

What is a complex plasma?

- Charged, strongly coupled microspheres in weakly ionized gas
- 1994 complex plasma crystal formed
- Open, self-organizing systems
- Length/ time scales ideal for video microscopy ($10^{-6} \mathrm{~m}, 10^{-4} \mathrm{~s}$)

Strongly correlated Coulomb systems in traps

Ions in Paul-/Penning traps G. Werth, Uni Mainz
"Artificial Atoms"

Electron crystal (Quantum dots)
A.Filinov, MB, Yu. Lozovik
*Slide taken from: Ladungen en der Falle ©Michael Bonitz, Universität Kiel, 2006

Wake Potential

Linear Response Theory

$$
\begin{aligned}
& \phi(r)=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q}{r} e^{-r / \lambda_{D}} \\
& \lambda_{D}=\sqrt{\frac{T \varepsilon_{o} k}{n_{e} e^{2}}}
\end{aligned}
$$

Point Charge Model

Project Goals

- Propose general description of wake potential by using NMA on single chain
- Search for evidence of mode coupling between chains in multi-chain dust structure

Normal Mode Analysis (NMA)

*mode = all components move at one same frequency

$$
M \ddot{\vec{r}}=D_{\alpha i, \beta j} \vec{r}
$$

$$
D_{\alpha i, \beta j}=\left(\frac{\partial F_{\alpha i}}{\partial r_{\beta j}}\right)
$$

Experimental Methods

- Gaseous Electronics Conference rf reference cell in Baylor's Hypervelocity Impacts \& Dusty Plasmas Lab

Video Microscopy

- Observe random thermal motion of

$$
\vec{v}_{i}(t)=\Delta \vec{r}_{i}(t) / \Delta t
$$ particles

- Project motion onto each mode eigenvector $(\ell=1,2, \ldots, 3 N)$

$$
v_{\ell}(t)=\sum_{i=1}^{N} \vec{v}_{i}(t) \cdot \vec{a}_{i, \ell}
$$

- Spectral Power Density

$$
S_{\ell}(\omega)=\frac{2}{T}\left|\int_{-T / 2}^{T / 2} v_{\ell}(t) \cdot e^{-i \omega t} d t\right|^{2}
$$

Single Chain Mode Spectrum

- Modes 1-6 = horizontal
- Modes 7-12 = vertical

Color bar = spectral power density (SPD)

Yukawa Model

CASPIE .

- Modes 1-6 = horizontal
- Modes 7-12 = vertical

$$
\phi(r)=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q}{r} e^{-r / \lambda_{D}}
$$

Yukawa Model

$$
\begin{aligned}
& \omega_{s}=a+b i \\
& x(t)=e^{-i \omega_{s} t}=e^{-i a t} e^{b t}
\end{aligned}
$$

System states

1. Stable (real frequencies)
2. Absolute Unstable (imaginary)
3. Schweigert Unstable (complex)

Point Charge Model

$$
\phi(r)=\frac{1}{4 \pi \varepsilon_{o}}\left[\frac{Q}{r} e^{-r / \lambda_{d}}+\frac{q}{r_{p}} e^{-r_{r} / \lambda_{d}}\right]
$$

Point Charge Model

$$
\phi(r)=\frac{1}{4 \pi \varepsilon_{o}}\left[\frac{Q}{r} e^{-r / \lambda_{d}}+\frac{q}{r_{p}} e^{-r_{r} / \lambda_{d}}\right]
$$

- Upstream = Yukawa, Downstream = Yukawa + point charge

Decaying, oscillating potential

$$
F_{\rho}=-k \rho\left(e^{-z} \sin (z)\right)
$$

HCS - Middle Chain Mode Spectrum

HCS - Middle Chain Mode Spectrum

HCS - Middle Chain Mode Spectrum

Conclusions

- Existence of an attractive downstream wake force was seen using NMA for a single chain.
- Data suggests mode coupling between chains in the hexagonal chain structure.

Future work

- Find mode eigenvalues numerically using COPTIC PIC simulation
- Double branching mode spectrum is still unexplained

Thanks CASPER!

