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Introduction         
       A complex plasma consists of dust particles immersed in a weakly ionized gas, a common 
occurrence in astrophysical environments.  In typical laboratory conditions particles obtain 
large charges and become strongly coupled via the screened Coulomb force. Plasma crystals 
have been studied extensively since their 1994 discovery [1]. Dust particles have large enough 
length and time scales to be observed through video microscopy, a method which does not 
perturb the system. Complex plasma particles are ideal models for the study of classical and 
condensed matter systems.  
       Systems with low particle numbers may be characterized by normal vibrational modes [2]. 
These mode eigenvectors and corresponding eigenfrequencies are determined by solving the 
linearized equation of motion  

  
with                       and                         .  Here the dynamic matrix is defined as  

  

       In typical laboratory conditions the path of ions are bent as they flow past the charged 
particle, leading to a complex downstream wake potential. The goal is to obtain a qualitative 
description of the potential for a single particle chain purely by comparing theoretical 
eigenfrequencies to experimental mode spectra. An additional goal is to explain the mode 
spectrum of a hexagonal chain structure.
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Figure 1. (a) Diagram of Gaseous Electronics Conference (GEC) reference cell in Baylor’s 
Hypervelocity Impacts & Dusty Plasmas Lab. The lower electrode ionizes the Argon gas and  
is driven at 13.56 MHz. The power is 200 mV, and the pressure is 144 mTorr. Horizontal 
confinement is provided by a parabolic well due to the cutout and a glass box. Particles 
levitate in the sheath above the lower electrode, balanced by a self induced E field. Laser 
illumination allows CCD camera imaging at 60 fps. (b) Single and hexagonal chain 
configurations for 8.89 micrometer melamine formaldehyde particles. Hexagonal chain is 
single chain surrounded by six three-particle chains in the shape of a hexagon when viewed 
from above. 
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Methods 
      Normal Mode Analysis (NMA) was performed by recording the random Brownian motion of 
particles around their equilibrium positions     at 60 fps. The particle velocities     
were projected onto each mode eigenvector        with                           representing mode 
number. Thus the time dependent signal 

is calculated. Finally, the spectral power density [3] is defined to be

!ri
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Figure 4. Radial direction 
eigenvectors for modes in top 
(left column) and bottom (right 
column) branches of Figure 3b.  
T h e s e m o d e s p r o d u c e 
frequencies which are higher/
lower than experiment. The top 
of view of the hexagonal 
structure is shown: a vertical 
middle chain with 6 particles 
surrounded by 6 sub-chains of 
3 part ic les each. Modes 
dominated by vertical sub-
chain motion seem to agree 
more closely with experiment.  
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Figure 3.  Relationship between vertical modes of a single chain and the middle chain 
of a hexagonal structure. High values correspond to strong correspondence between 
the modes. (b) Frequencies for the maximum of each apparent branch. The top two 
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       It can be seen from Figure 1a that vertical motion is well described by a Yukawa potential, 
but horizontal motion is not. Imaginary frequencies correspond to absolutely instabilities in the 
system, as can be seen from an exponential growth or decay term in the equation of motion: 

The point charge model is a logical next step, in which an additional term is added to the 
Yukawa potential: 

where      and       art the charge and distance to the point charge. Figure 1b shows that this 
additional term disturbs the vertical modes, although leading to the semi-stable Schweigert 
instabilities in the horizontal modes (complex # frequencies). It can be concluded that the 
point charge model is inadequate for a vertically aligned structure; however, Figure 1c 
suggests a potential that only acts on downstream neighbors is more accurate.  
       A final analytical guess of the potential comes in the form of a harmonic oscillator 
potential well, decaying along the z axis: 

where      is the radial distance from the z axis. The sinusoidal term creates a positive space 
charge region, instead of a simple point charge. Figure 1d shows a semi-stable system, 
suggesting a wake force which is attractive mostly in the radial direction.
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   Figure 3 shows a double branching effect for the hexagonal structure mode spectrum, but a 
quadruple branch for the theoretical. Results are inconclusive. The top two branches (shown 
in white) present frequencies close to that of experiment, particularly modes 3 and 5. 
However, outlying frequencies exist at the bottom two branches. Observation of the mode 
eigenvectors in Figure 4 shows that the outlying branches are dominated by radial motion. 
Horizontal modes for the sub-chains may be coupled with vertical modes in the middle chain.

       Conclusions 
       By fitting theoretical eigenfrequencies to a the normal mode spectrum for a single chain, 
a general description of the wake potential behind a particle was proposed. It is attractive in 
the radial direction, with a positive region around the position of the lower particle. It decays 
along the z axis, and it only acts on downstream particles. Additionally, the mode spectrum of 
the middle chain in a hexagonal structure suggests mode coupling between outer and inner 
chains.  
       Future work will seek to validate better models of the wake potential using NMA. 
Analytical expressions of the potential involve difficult complex integration, so a numerical 
implementation could studied using COPTIC, a particle-in-cell simulation. It is still unknown if 
downstream particles affect the wake of the top particle, which could have consequences in 
chains. Results could be generalized to a hexagonal structure.

Results 

Figure 2.  The normal mode spectrum for a six particle, vertically aligned chain. The 
ionized Argon gas pressure = 144 mTorr, and the rf power = 200 mV. Modes 1-6 are 
horizontal oscillations; 7-12 are vertical. The color bar corresponds to measured spectral 
power density. White dots are the calculated eigenfrequencies based on a) Pure Yukawa 
potential, b) Yukawa + point charge potential, c) same as b, but only acting on downstream 
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www.baylor.edu/CASPERWhat is a complex plasma?

• Charged, strongly coupled micro-
spheres in weakly ionized gas

• 1994 complex plasma crystal 
formed

• Open, self-organizing systems

• Length/ time scales ideal for video 
microscopy (       m,        s)10−6 10−4



Strongly correlated Coulomb systems in traps

Ions in Paul-/Penning traps 
G. Werth, Uni Mainz

Dusty Plasmas, Coulomb crystal 
A. Piel, A. Melzer

Electron crystal 
(Quantum dots) 

A.Filinov, MB, Yu. Lozovik

“Artificial Atoms”

*Slide taken from: Ladungen en der 
Falle ©Michael Bonitz, Universität Kiel, 
2006
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ion flow
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Point Charge Model

LAMPE et al.: STRUCTURE AND DYNAMICS OF DUST IN STREAMING PLASMA 59

Fig. 1. (a) 3-D plot of the potential , for ,
, . (b) Contour plot of , same case. In all contour

plots, dashed contours represent negative values, and tick marks indicate the
decreasing direction.

where

(1b)

and is the plasma dielectric given by

(2)

Here, is the vector separation between the grains, is the
ambient ion distribution function (which we assume to be a
drifted Maxwellian), is the ion plasma frequency, and is the
ion-neutral collision frequency. Equations (1) and (2) represent
the complete linear response of the plasma ions and the warm
electrons, including wakefields, ion-neutral collisions, Landau
damping, and even the ion contribution to ion-dust two-stream
instabilities [36]–[38]. If we use the shielded potential (1) and
(2) as the interaction between grains, the plasma is completely
eliminated from the problem. Furthermore, the force exerted on
any particular grain by all of the other grains is given just by the
linear superposition of dynamically shielded potentials of the
form (1) and (2), since the plasma response is linear. This repre-
sentation is thus a very great simplification in the theory, which
is soundly based on the physics.

It is easy to calculate by using fast Fourier transforms,
and the calculation only needs to be done once for any set of pa-
rameters. We have used this formulation to develop a particle-in-
cell (PIC) simulation code that we call dynamically shielded
dust (DSD), [39], [40] in which the grains are represented as
particles, but the plasma never appears except in the dielec-
tric . In this paper, we shall also use the formulation
to develop analytic theory in which only the grains appear ex-
plicitly. However, the plasma always lurks in the background,
as the ion flow is embedded in . One consequence is
that the potential , which is shown in Fig. 1 for the case

, , , is anisotropic and
asymmetric under the transformation . Upstream and
to the side, is a repulsive potential generally similar to
(but not exactly equal to) to the Debye-shielded Coulomb poten-
tial. Downstream, is a very long range rippled wakefield
which includes attractive regions, as seen in Fig. 1. The details
of depend [28], [39], [40] on , and . If

, Landau damping can significantly reduce
the range and smooth out the oscillations, and at high pressure
ion-neutral collisions have a similar effect, but even at 60 Pa [23]
the range is still effectively of the order of . The asym-
metry of the potential means that Newton’s law of equal ac-
tion-reaction does not hold, and neither energy nor momentum
is conserved within the collection of dust grains. For this reason,
we shall refer to the dust grains as a non-Newtonian system of
particles.3

III. COHERENT ASSEMBLIES OF GRAINS WITH

NO EXTERNAL POTENTIAL

A. Two Grains

Consider first, the trivial case of a single grain in flowing
plasma, with no external confining potential. The grain is sub-
ject to an ion drag force , which we assume here to be the
same on all grains and independent of the grain velocity, and
to frictional drag against the stationary neutral gas with friction
coefficient . The equation of motion is simply

(3)

3A referee of this paper pointed out to the authors another example of a system
in which the forces between particles violate Newton’s third law: a charged
particle within a conducting shell exerts a force on a charged particle outside,
but the inside particle is shielded from the effect of the outside charge.

Linear Response Theory

Lampe

φ r( ) = 1
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www.baylor.edu/CASPERProject Goals
● Propose general description of wake potential by using NMA 

on single chain 
● Search for evidence of mode coupling between chains in 

multi-chain dust structure 
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M!""r = Dαi,β j
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*mode = all components move at one same 
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www.baylor.edu/CASPERExperimental Methods
● Gaseous Electronics Conference rf reference cell in 

Baylor’s Hypervelocity Impacts & Dusty Plasmas Lab

CCD camera 
(60 fps) 
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• Power = 200 mV

• Pressure = 140 mTor
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vℓ(t) =
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• Observe random thermal motion of 
particles

!vi (t) = Δ!ri (t) Δt

• Project motion onto each mode  
eigenvector

• Spectral Power Density

N = 4
N = 24 (12 visible)

ℓ = 1,2,..., 3N( )



www.baylor.edu/CASPERSingle Chain Mode Spectrum

• Modes 1-6 = horizontal
• Modes 7-12 = vertical

Color bar = spectral power 
density (SPD)
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Theoretical Mode Frequencies

• Modes 1-6 = horizontal
• Modes 7-12 = vertical
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System states
1. Stable (real frequencies)
2. Absolute Unstable 

(imaginary)
3. Schweigert Unstable 

(complex)

ω s = a + bi

x t( ) = e− iω st = e− iatebt
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• Upstream = Yukawa, 
Downstream = Yukawa + 
point charge
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www.baylor.edu/CASPERDecaying, oscillating potential

Fρ = −kρ e− z sin(z)( )
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www.baylor.edu/CASPERHCS - Middle Chain Mode Spectrum
Hexagonal Chain Structure
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www.baylor.edu/CASPERHCS - Middle Chain Mode Spectrum

1 2 3 4 5 6

single chain mode number

0

2

4

6

8

10

12

14

16

18

20

fr
eq

ue
nc

y 
(H

z)

1

2

3

4

5

6

7

8

9

10

11

10-9

1 2 3 4 5 6

single chain mode #

10

20

30

40

50

60

70

he
xa

go
na

l c
ha

in
 m

od
e 

#

0.1

0.2

0.3

0.4

0.5

0.6

0.7



www.baylor.edu/CASPERHCS - Middle Chain Mode Spectrum

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/d

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/
d

mode72    (15.3751 Hz)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/d

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/
d

mode71    (12.947 Hz)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/d

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/
d

mode70    (12.0513 Hz)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/d

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/
d

mode31    (21.0396 Hz)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/d

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/
d

mode30    (20.5326 Hz)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x/d

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y/
d

mode19    (6.528 Hz)



www.baylor.edu/CASPERConclusions
● Existence of an attractive downstream wake force 

was seen using NMA for a single chain.
● Data suggests mode coupling between chains in the 

hexagonal chain structure. 
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● Find mode eigenvalues numerically using COPTIC - 

PIC simulation

● Double branching mode spectrum is still unexplained
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