### Self-Consistent Dynamic Simulation of Ions around a Negatively Charged Dust Grain

Beau A. Brooks Dustin L. Sanford Naoki B. Ellis Dr. Lorin S. Matthews Dr. Truell W. Hyde





### Overview

- Research Goal
- Code Development
- Current Code
  - Parameters
  - Forces
  - Ion Density
  - Electric Potential
  - Ion-Neutral Particle Collisions

www.baylor.edu/CASPEF

- Results
- Conclusions

# Objective

- Inspiration:
  - Alexander Piel
    - Developed MAD code to model N-ions in a plasma sheath

www.baylor.edu/CASPE

- Models Ion density and electric potential
- Create a dynamic simulation to repeat Piel results
- Implement additional forces

Alexander Piel, "*Molecular dynamics simulation of ion flows around microparticles,*" IEAP, Christian-Albrechts-Universitat, D-24098 Kiel, Germany, 2017.

# Model

- Ions begin in positive Z
  - Given initial position and velocity
- Ions experience forces from environment
  - Other ions
  - Dust particle
  - External **E** field
  - Collisions
- Ions reset when leaving simulation
  - Boundaries





#### Parameters

- Dust
  - Charge = 30,000e
  - Radius = 8.89e-6 m
- lons
  - Argon (mass = 6.63e-26 kg)
  - Charge = -e
  - Ion Temperature = 300 K
- Electron Temperature = 46000 K
- Mach = 1.1
- Plasma Density Far from Dust = 1e15 particles/m<sup>3</sup>



#### Forces

#### Ion/Ion Interactions

- Ions treated as Yukawa Particles (shielded by thermal electrons)
- Ion/Dust Interaction
  - Dust treated as point charge
- Ion/Electric Field

• 
$$E(r) = \frac{en_{i0}\lambda_{De}}{\epsilon_0}(\frac{R}{\lambda_{De}}+1) \times \exp(-R/\lambda_{De}) \times \frac{\lambda_{De}}{r} \left[\sinh\frac{r}{\lambda_{De}} - \frac{\lambda_{De}}{r}\cosh\frac{r}{\lambda_{De}}\right]$$





### Ion Density and Electric Potential

CASPER www.baylor.edu/CASPE

- Simulation sphere divided into grid spaces
  - Grid records the location of each ion over time
- Electric potential summed using a 3D grid
  - Shielded ion potentials

• 
$$\Phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \frac{\exp\left(-\frac{|\vec{r}-\vec{r}_i|}{\lambda_{De}}\right)}{|\vec{r}-\vec{r}_i|}$$

- Coulomb potential of dust particle
- External potential due to plasma electric field





### **Ion-Neutral Particle Collisions**

- Plasma has neutral atoms
- Resonant charge exchange between atom and ion
- Gas density is related to ion mean free path
  - Current mean free path approximated to  $0.75^*\lambda_{De}$
- Ions velocity is randomized at end of path to simulate collision



+

#### Results





CASPER www.baylor.edu/CASPER

# Results (cont.)



CASPER www.baylor.edu/CASPER

## Results (cont.)





### Results (cont.)





### Discussion

- Electric potential values
- Ion density map
  - number of ions vs resolution
- Ion mean free path
  - $\bar{\lambda} = \frac{kT}{P\pi\sigma\sqrt{2}}$  where T is ion temperature, P is pressure, and  $\sigma$  is effective collisional cross section

www.bavlor.edu/CASPE

• Gives very small value on order of 10<sup>-16</sup>



### Conclusion

- Increased number of ions needed
  - Piel uses 2<sup>16</sup> ions
- Dust charging as future implementation
- Code can be translated to C++ and run on GPU



## Acknowledgements

- CASPER
- Baylor University Department of Physics
- NSF Grant No. 1414523
- B-TRUE

### Works Cited



- Alexander Piel, "Molecular dynamics simulation of ion flows around microparticles," IEAP, Christian-Albrechts-Universitat, D-24098 Kiel, Germany, 2017.
- G. I. Sukhinin, "Plasma anisotropy around a dust particle placed in an external electric field," Phys. Rev. E 95, 063207, 2017.
- S. A. Maiorov, "Ion Drift in a Gas in an External Electric Field," Plasma Physics Reports, ISSN 1063-780X, 2009.